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Abstract

Metformin, the first line pharmacotherapy for type 2 diabetes has demonstrated

favourable effects in prostate cancer (PCa) across a range of studies evaluating

PCa patient outcomes amongst metformin users. However, a lack of rigorously

conducted prospective studies has stalled clinical use in this setting. Despite mul-

tiple studies evaluating the mechanisms underpinning antitumour effects of met-

formin in PCa, to date, no reviews have compared these findings. This systematic

review and meta-analysis consolidates the mechanisms accounting for the antitu-

mour effect of metformin in PCa and evaluates the antitumour efficacy of met-

formin in preclinical PCa studies. Data were obtained through Medline and

EMBASE, extracted by two independent assessors. Risk of bias was assessed

using the TOXR tool. Meta-analysis compared in vivo reductions of PCa tumour

volume with metformin. In total, 447 articles were identified with 80 duplicates,

and 261 articles excluded based on eligibility criteria. The remaining 106 articles

were assessed and 71 excluded, with 35 articles included for systematic review,

and eight included for meta-analysis. The mechanisms of action of metformin

regarding tumour growth, viability, migration, invasion, cell metabolism, and acti-

vation of signalling cascades are individually discussed. The mechanisms by which

metformin inhibits PCa cell growth are multimodal. Metformin regulates expres-

sion of multiple proteins/genes to inhibit cellular proliferation, cell cycle progres-

sion, and cellular invasion and migration. Published in vivo studies also

conclusively demonstrate that metformin inhibits PCa growth. This highlights the

potential of metformin to be repurposed as an anticancer agent, warranting fur-

ther investigation of metformin in the setting of PCa.
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1 | INTRODUCTION

Prostate cancer (PCa), the second most commonly diagnosed cancer

amongst men worldwide,1 has an incidence rate of almost 60% for

men above 65 years.1 The global mortality from PCa is estimated to

double from 2018 to 2040, reaching 379 005 annual deaths.1 These

numbers indicate new therapies for advanced metastatic PCa are

urgently needed.

The current management for locally advanced or metastatic PCa

requires androgen deprivation therapy (ADT)2,3; however, ADT has lim-

itations. While approximately 80% of PCa tumours respond to ADT,4

10–20% become refractory within 5 years.5 This is known as castrate-

resistant PCa (CRPC) and is defined by increasing PSA levels despite

testosterone levels below 50 ng/dl.3,6 The median prognosis for CRPC

is 2 years.7 In addition, ADT has several adverse metabolic and cardio-

vascular effects8 including rapid development of insulin resistance,

increased cholesterol, sarcopenic obesity9 and an increased risk of dia-

betes mellitus.10 By removing an important regulator of prostate differ-

entiation, ADT also facilitates epithelial to mesenchymal transition

(EMT), a key process underlying metastasis and therapeutic resis-

tance.11 AR-signalling inhibitors (ARSIs) such as abiraterone and enzalu-

tamide have been widely adopted for CRPC, in line and in combination

with chemotherapies such as docetaxel. However, these drugs only

extend survival by a matter of months compared with placebo.12 This

is partially due to the development of resistance13 which highlights

the need for new therapeutic strategies that counteract drug

resistance and mitigate the significant side effects of the current

therapeutics.

Metformin as first-line pharmacotherapy for type 2 diabetes mellitus

(T2DM) patients is used by approximately 120 million people world-

wide14 with no significant long-term safety issues identified.15 Apart

from improving insulin sensitivity, metformin has cardiovascular benefits

such as reducing cholesterol levels16 and body weight15 and may coun-

teract ADT-induced adverse cardio-metabolic effects. Various epidemio-

logical studies have shown diabetes patients treated with metformin had

reduced risk of cancer, including PCa compared with patients on other

antiglycaemic agents such as insulin and secretagogues such as

sulphonylureas17–22 with improved survival outcomes.23,24 In contrast,

other studies have shown metformin does not significantly reduce the

risk of PCa.22,25,26 Therefore, multiple systematic reviews and meta-

analyses have been conducted to evaluate the clinical outcome of met-

formin users, specifically evaluating PCa risk (Table 1) and

survival (Table 2). With the exception of three studies,27–29 most meta-

analyses have indicated metformin does not reduce the risk of PCa

(Table 1).30–34 However, a significant number of observational studies

included in these meta-analyses were retrospective, which may have sig-

nificant bias. When only considering prospective studies, there was a

slight reduction in PCa risk with metformin (summary relative

risk = 0.93; 95% CI: 0.89–0.97).29 In terms of clinical outcome, five

meta-analyses conclusively indicated that metformin reduced

biochemical recurrence (BCR) of PCa,28,35–38 highlighting the possibility

of repurposing this antidiabetic drug as an antitumour agent in PCa

(Table 2).

Multiple in vitro and in vivo studies have investigated the mecha-

nisms accounting for the antitumour effect of metformin in PCa,39–41

but to date, no reviews have consolidated these findings. Hence, this

systematic review and meta-analysis aims to consolidate the

published mechanisms accounting for the antitumour effect of

metformin in PCa and evaluate the antitumour efficacy of metformin

in preclinical PCa studies.

2 | METHODS

2.1 | Search strategy

The search strategy was based on population intervention comparator

outcome (PICO) format: What is the cell intrinsic and whole metabolic

effects (Outcome) of metformin (Intervention) on prostate cancer

(Population)? This systematic review was carried out following the Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines. N.F.W and J.H.G searched for articles using two

search engines: Embase and Medline. Articles published in these search

engines up to the date 20 May 2020 were screened. We started with a

broad search strategy (Tables S3 and S4), including search terms such

as “metformin”, “prostate cancer”, “anti-proliferative”, “anti-tumour”,
“tumour recurrence”, “metabolism”, “risk”, “morbidity”, and “mortal-

ity”. The initial aim was to correlate the antitumour effect of metformin

from in vitro studies with clinical outcomes of PCa patients on metfor-

min. Reports containing only clinical studies, without basic or transla-

tional components, were excluded as there have been a multitude of

systematic reviews evaluating this outcome.27,30,32,33,35–38

2.2 | Study selection

2.2.1 | Inclusion criteria

This review included all studies that investigated mechanisms behind

the antitumour effect of metformin in PCa cell lines, mouse models,

and in PCa patients.

2.2.2 | Exclusion criteria

This review excluded the following articles (Figure 1):

1. Studies with incorrect intervention.

2. Articles with incorrect/missing outcomes.

3. Studies with incorrect tumour type.

4. Clinical studies of patient’s outcome following metformin

treatment.

5. Studies investigating metformin effect on standard/non-standard

prostate cancer treatment.

6. Conference abstracts, reviews, notes or editorials.

7. Non-English language publications.
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T AB L E 1 Summary of systematic review/meta-analyses evaluating metformin effect on PCa risk. Results were obtained from clinical data of
diabetic patients

Author Year Title Statistics Risk of PCa

DeCensi et al.25 2010 Metformin and cancer risk in diabetic patients: a systematic

review and meta-analysis

RR: 0.69,

95% CI: 0.61–0.79
p value: 0.03

Franciosi et al.28 2013 Metformin therapy and risk of cancer in patients with type 2

diabetes: systematic review

OR: 1.18

95% CI: 0.69–2.04
p value: 0.545

NS

Zhang et al.29 2013 Association of metformin use with cancer incidence and

mortality: a meta-analysis

RR: 0.91

95% CI: 0.80–1.03
NS

Yu et al.26 2014 Effect of Metformin on Cancer Risk and Treatment Outcome

of Prostate Cancer: A Meta-Analysis of Epidemiological

Observational Studies

OR: 0.91

95% CI: 0.85–0.97
p- value: 0.014

Gandini et al.27 2015 Metformin and Cancer Risk and Mortality: A Systematic

Review and Meta-Analysis taking into account Biases and

Confounders

SRR: 0.93

95% CI: 0.89–0.97

Chen et al.30 2018 Metformin, Asian ethnicity and risk of prostate cancer in type

2 diabetes: a systematic review and meta-analysis

RR: 1.01

95% CI: 0.8–1.28
p value: 0.92

NS

Feng et al.31 2019 Metformin use and prostate cancer risk: A meta-analysis of

cohort studies

RR: 0.97

95% CI: 0.8–1.16
p value: 0.711

NS

Ghiasi et al.32 2019 The Relationship Between Prostate Cancer and Metformin

Consumption: A Systematic Review and Meta-analysis

Study

OR: 0.89

95% CI: 0.67–1.17
NS

Note: NS: No statistically significant relationship between metformin and risk of PCa; RR: relative risk; SRR: summary relative risk; OR: odds ratio, :

metformin reduces risk of PCa.

T AB L E 2 Systematic review/meta-analyses summary of metformin effect on PCa patient outcome

Author Year BCR Overall survival
Cancer specific
mortality

Cancer specific
survival

All-cause
mortality

Yu et al.26 2014 HR: 0.81

95% CI: 0.68–
0.98

p value: 0.014

- - - NS

HR: 0.86

95% CI: 0.64–1.14
p value: 0.001

Hwang et al.33 2015 RR*:1.20

95% CI*: 1–1.44
- NS

RR*: 2.27

95% CI*: 0.61–8.38

- NS

RR*: 1.26

95% CI*: 0.75–
2.12

Raval et al.34 2015 HR: 0.82

95% CI: 0.67–
1.01

p value: 0.06

- NS

HR: 0.76

95% CI: 0.43–1.33
p value: 0.33.

- NS

HR: 0.86

95% CI: 0.67–1.1
p value: 0.23

Coyle et al.35 2016 HR 0.83

95% CI: 0.69–
1.00

Improved

HR: 0.82

95% CI: 0.73–
0.93.

- Improved

HR 0.58

95% CI: 0.37–0.94

-

Stopsack

et al.36
2016 HR: 0.79

95% CI: 0.63–
1.00

p value = 0.047

Improved

HR: 0.88

95% CI: 0.86–
0.90

p value < 0.001

NS

HR 0.76

95% CI: 0.44–1.31
p value = 0.33

-

Note: : Reduced biochemical recurrence. NS: No significant statistical relationship between metformin use and outcome. -: Outcome not investigated in

study.

*Statistical results show results of PCa patients with T2DM without the use of metformin.
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2.2.3 | Data extraction

The authors devised a search strategy to include all possible related

synonyms (Tables S3 and S4), identifying 367 articles after duplicates

were removed. These articles were screened by both N.F.W and J.H.

G based on title, and then abstract and 35 articles were included in

this systematic review (Figure 1). Any disagreement in exclusion cri-

teria was resolved via discussion.

Both authors extracted the following data simultaneously from

each article: title, author names, year of study, as well as the study

objective, outcomes, and methodology. Similar data was collated by

both authors.

2.3 | Risk of bias

To evaluate risk of bias in each article, the Toxicological data Reli-

ability (TOXR) Assessment Tool was used. An 18-point and

21-point assessment was evaluated for in vitro and in vivo studies,

respectively. The TOXR tool categorizes each article into three dif-

ferent categories: 1, 2, or 3, based on minimum criteria. Category

1 articles are reliable without restrictions; Category 2 articles are

reliable with restrictions; Category 3 articles are unreliable and not

to be used as a key study. Both authors assessed the risk of bias

of each article individually, and discrepancies resolved via

discussion.

F I GU R E 1 PRISMA flow chart for study inclusion.
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2.4 | Statistical analysis

Meta-analysis was performed on in vivo data to evaluate the effect of

metformin treatment on tumour volume. All data were extracted from

article texts, tables, and figures, with any estimates made based on

the presented data and figures, where tumour volume for control and

experimental groups were reported (mean � standard deviation mm3)

or could be derived. Derived data included variance estimations based

on established statistical methodologies. Statistics were performed on

continuous data from 16 experiments from eight studies40–47 using

random effects model to pool effects sizes for meta-analysis. Stan-

dardized mean difference (Cohen’s d) was calculated in RevMan soft-

ware. Heterogeneity was tested using I2 statistic. Publication bias was

evaluated using funnel plot analysis.

3 | RESULTS

3.1 | Study selection and characteristics

A total of 447 articles were identified from Medline and Embase, which

included 80 duplicated articles. We screened 367 unique records based

on the article title, resulting in 66 articles excluded, which did not

match study characteristics. The remaining 301 articles were subjected

to screening based on the abstract, with 195 records excluded due to

reasons outlined in Figure 1. The full text of the remaining 106 articles

was assessed, with a further 71 articles excluded (Figure 1), the major-

ity (56) being conference abstracts. Thus, 35 articles remained for quali-

tative analysis, and of these, eight studies evaluated the efficacy of

metformin in reducing PCa tumour growth in mice models and were

included for quantitative analysis (Figure 1).

The 35 articles were published between 2003 and 2018, showing

sustained interest in this field. Of the 35 articles included for qualita-

tive analysis, 31 investigated the antitumour effects of metformin

using PCa cell lines, 13 articles included mouse models, and five arti-

cles included PCa patients. The outcomes of these studies are summa-

rized in Table S5. Out of the 13 articles that included mouse models,

eight articles evaluated subcutaneous PCa xenograft tumour volume

following metformin administration and utilized similar dosing and

experimental duration. The remaining five in vivo articles were

excluded as they did not report tumour volume and were instead eval-

uating metastasis or protein expression.

3.2 | Qualitative analyses

3.2.1 | Risk of bias

The TOXR tool evaluates the reliability of in vitro and in vivo data

reporting, assigning weighted scores in the categories of drug identifi-

cation, in vitro or in vivo model characterization, study design and

documented results, with in vivo studies also assessed for plausibility

of study design and results. Each criterion within a category is given a

score of 1 if the paper contained each relevant detail, or a score of

0 if details were omitted. The 18-point system from the TOXR tool

was used to evaluate all 31 in vitro studies.48 Category 1 articles

scored 15 or more out of 18, category 2 scored between 11 and

14, and a score of 11 or the inability to meet critical criteria was a cat-

egory 3 article. Only two of 31 in vitro studies were categorized as

category 3 as the critical criterion were not met (Table S6).42,49 Caraci

et al. did not state the metformin concentration used,49 whereas Chen

et al.’s study design was inappropriate in achieving the specific aims

as it did not evaluate PEDF knockdown or gene inhibition on PCa pro-

liferation, migration, and tumour growth.42 Therefore, the findings

from these category 3 articles were classified as unreliable. Three arti-

cles were assigned to category 250–52 as multiple minor criteria were

not met including purity of substance,50–52 experimental incubation

temperature and percentage of CO2,
50,51 number of cells seeded,50

statistical tests performed,50,52 and number of replicates in each

experiment.51,52 The remaining 26 studies were classified as category

1 and deemed reliable for further analysis (Table S6).39,40,43,44,46,47,53–71

The 21-point system from the TOXR tool was used to evaluate

the 13 in vivo mouse studies. Only one of the 13 studies was classi-

fied as category 3 as not all critical criteria were met.72 The study

design was inappropriate in achieving the aim as mice did not harbour

PCa tumours, despite the study hypothesising metformin may inter-

fere with PCa progression.72 An additional four studies were classified

as category 244,45,55,68 with a score between 13 and 17. Criteria that

were not met included purity of substance,44,45,55,68 gender of

organism,44,55,68 age/weight of organism,44,45,55 feeding/housing

conditions,45,55 statistical significance,44,45,68 source of metformin,68

and vehicle used to dissolve metformin.68 The remaining eight studies

were classified as category 1, meeting most criteria with a score of

18 or more.40–43,46,47,54,62

Of the 35 articles identified, five articles evaluated the

clinical effects of metformin in human PCa patients. Again, the

21 point system from the TOXR tool was used to evaluate each

article, with three articles classified as category 3 as critical criteria

such as metformin dose,55,68 or frequency and duration of exposure

to metformin was not disclosed,55,68,73 while the remaining two

articles were category 1 articles with most/all criteria being met47,74

(Table S6).

3.2.2 | Type of outcomes

The outcomes most reported for in vitro studies included cell viability,

apoptosis, migration, invasion, cell cycle arrest, and protein expres-

sion. For in vivo studies, the outcomes included tumour volume, and

in a small number of studies, metastatic burden (Table S5).

3.2.3 | Cell growth

Major hallmarks of cancer include ability to evade cell death and sus-

taining proliferative signals.75 To evaluate the antitumour effect of
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metformin, one of the most reported outcomes in the 31 in vitro stud-

ies was the effect of metformin on PCa cell viability. The Cell Counting

Kit-8 assay, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) assay and related MTS and Alamar blue assays were

used to evaluate cell viability. The caveat of these assays is they

extrapolate viability from mitochondrial activity and metformin is a

known inhibitor of Complex I of the electron transfer chain. Decreased

mitochondrial respiration may result in an overestimation of the effects

of metformin on cell viability using these approaches.

The extent of inhibition on cell proliferation was dependent on

the experimental method (e.g., incubation period, concentration of

drug, and cell line used). A range of doses from 0.1–50 mM were

tested, with 5 mM the most common concentration, still well above

the reported peak-plasma concentrations obtainable in humans,76

with four studies using concentrations in the high micromolar

range.42,45,46,70 The viability of androgen-dependent PCa cell lines

(LNCaP, VCaP, DuCaP) was evaluated in 15 studies and showed sig-

nificant inhibition of cell growth (Table S5).39–42,46,50–52,55,58–61,64,67

LNCaP cells treated with 5 mM metformin for 48 h resulted in growth

inhibition between 25% and 60% (Table S5).41,46,50,51,59,64 There were

20 in vitro studies (n = 20) that evaluated viability using androgen-

independent PCa cell lines (DU145, PC-3, C4-2, PPC1, LNCaP-LA,

22Rv1), most commonly PC-3 and DU145.39–42,44,46,47,50–55,59–

61,64,66,67,70 Metformin reduced cell viability of androgen-independent

PCa cells in 17 out of 20 studies,39,40,42,44,46,47,50–55,59–61,66,67

whereas three studies showed a nonsignificant effect.41,64,70 Lastly,

six in vitro studies evaluated the outcome of metformin on the cell

viability of benign prostatic epithelial cells (PNT1A, RWPE-1, EP156T,

P69),39–41,54,61,70 which reported no effect in three out of six studies

(50%),54,61,70 but growth inhibition ranging from 20% to 60% (treated

for 24, 72, and 96 h) in the remaining 3.39–41 In addition, both Wang

et al. and Shen et al. showed the combination of metformin and ARSI,

bicalutamide resulted in greater inhibition on PCa cell viability com-

pared with either agent alone.52,59

3.2.4 | Apoptosis

Nine studies evaluated whether reduced viability with metformin was

due to apoptosis. Levels of apoptosis were evaluated by flow cytome-

try and annexin V staining or caspase 3 cleavage.40,42,44,46,47,52,54,59,70

All of the studies included androgen-independent PCa cell lines

(C4-2B, PC-3, CWR22Rv1, DU145),40,42,44,46,47,52,54,59,70 whereas

three studies included androgen-dependent (LNCaP) cell lines,40,42,59

and one study included the benign prostatic cell line PNT1A.70 The

effect of metformin on induction of apoptosis in PCa cells remains rel-

atively controversial, as three out of the nine studies showed that

metformin (0.1–10 mM) does not significantly induce apoptosis in

androgen-independent PCa cell lines,40,46,70 whereas the remaining

six that assessed higher metformin concentrations of 2–30 mM

showed increased induction of apoptosis.42,44,47,52,54,59 Of the three

studies that evaluated metformin and apoptosis of LNCaP cells, one

study using 5-mM metformin showed a nonsignificant effect,40

whereas two studies using metformin (0.625–30 mM) showed

increased induction of apoptosis following metformin treatment.42,59

3.2.5 | Cell cycle inhibition

Cell cycle is a tightly regulated process in most functioning cells with

multiple checkpoints that trigger cell cycle arrest. However, cancer cells

have deregulated cell cycle and increased proliferation.77 A total of eight

in vitro studies evaluated the effect of metformin on PCa cell cycle pro-

gression. The most used method to evaluate cell cycle was flow cytome-

try.40,42,47,50,54,58,61,66 A range of PCa cell lines were used in these

studies: Four studies used only androgen-dependent PCa cell lines

(LNCaP, VCaP),40,50,58,61 three studies used only androgen-independent

PCa cell lines (C4-2B, 22Rv1, DU145, PC-3),47,54,66 and one study used

both.42 The concentration range of metformin ranged from 0.625 to

10 mM, with 5 mMmost commonly used. In six of the eight studies, cell

cycle progression was inhibited in both androgen-independent and

androgen-dependent PCa cell lines (LNCaP, VCaP, C4-2B, 22Rv1,

DU145) with an increased percentage of cells in G0/G1 phase or

reduced percentage of cells in S + G2/M phase (Table S5).40,50,54,58,61,66

For PCa cell lines treated with 5 mM metformin, there was a reduction

of 7.1–16.2% of cells in S-phase following treatment, and an increase of

9.1–24% of cells in G0/G1 (Table S5).40,50,61,66 The variation in percent-

age reduction could be due to the difference in PCa cell type and/or

incubation period. Liu et al. mentioned possible inhibition in PC-3 and

DU145 cell cycle progression by metformin; however, the percentage

reduction/increment was neither given in the text nor the supplemen-

tary figure.47 In contrast, Kato et al. showed 24-h exposure to metfor-

min (0.625, 2.5, and 10 mM) did not alter cell cycle progression in either

PC-3 or LNCaP cells.46

3.2.6 | Cellular invasion and migration

The invasive and migratory ability of PCa cells is critical in the devel-

opment of metastasis.78 Thirteen studies evaluated the effect of met-

formin on PCa cell migration/invasion,39,41–43,46,47,58,61,62,66,68–70

typically using Boyden’s chamber or wound healing assays, in

androgen-dependent (LNCaP, VCaP), and androgen-independent PCa

cell lines (PC-3, DU145, 22Rv1) and benign prostate epithelial cells

(PNT1A and RWPE). All five studies that evaluated the effect of met-

formin on migration and/or invasion of androgen-dependent PCa cells

concluded metformin (0.625–20 mM) reduced cellular migration

and/or invasion in androgen-dependent PCa cell lines.39,42,47,58,61 For

androgen-independent PCa cell lines, eight of nine studies that evalu-

ated cellular migration using metformin (1–20 mM)39,41–43,46,66,68,69

and six out of seven that evaluated cellular invasion using metformin

(0.625–20 mM),42,43,46,62,68,69 showed similar findings. Therefore, the

inhibitory effect of metformin on cellular migration and invasion may

be independent of the androgen receptor (AR) signalling pathway.
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3.2.7 | Protein expression and molecular pathways

Since Evans et al. first reported in 2005 that metformin use in T2DM

patients was associated with a reduced risk of cancer,79 multiple pre-

clinical studies have been carried out to delineate its molecular mech-

anisms. The hallmarks of cancer include the ability of maintaining

proliferative signalling, evasion of growth suppressors, evasion of apo-

ptosis, inducing angiogenesis, invasion and metastasis, and lastly

allowing for indefinite cellular replication.75 Four emerging hallmarks

have emerged including reprogramming energy metabolism to allow

for rapid cell growth and division, and the ability to evade immune

destruction.75 From the 31 in vitro studies identified, it appears met-

formin inhibits a large proportion of these capabilities, summarized in

Figures 2 and 3.

Activation of AMP activated kinase (AMPK) is a widely known

effect of metformin, which inhibits several metabolic enzymes such as

mammalian target of rapamycin (mTOR), and acetyl-CoA carboxylase

(ACC), responsible for protein synthesis and fatty acid synthesis

respectively (Figure 2).40,63 Both of these processes are commonly

elevated in cancer cells.80 Therefore, activation of AMPK by metfor-

min could account for one of its antitumour mechanisms, affecting

energy triage and controlling cell cycle, biomass accumulation for cell

proliferation and apoptosis. Of the 31 in vitro articles, 11 studies eval-

uated PCa cell lines for AMPK activation by western blot. These stud-

ies consistently reported metformin results in increased pAMPK

expression while total AMPK levels remained relatively

unchanged.40,44,50,51,53,57,59,60,65,66,70

Apart from inhibiting ACC and mTORC, the activation of AMPK

by metformin has also been associated with the reduction of FoxM1,

a transcription factor that regulates EMT, vital for PCa cellular migra-

tion.60 Knockdown of FoxM1 by shRNA in androgen-independent

DU-145 cells resulted in reduced cellular migration, decreased expres-

sion of mesenchymal markers (vimentin and slug) and increased

expression of epithelial markers (E-cadherin).60 These data suggest

that metformin may inhibit EMT, a process underlying metastasis and

therapeutic resistance, via suppression of FoxM1 in PCa.60 Several

additional studies have linked metformin with inhibition of EMT in

PCa, although whether these pathways are AMPK-dependent has not

been investigated. For instance, metformin treatment resulted in an

upregulation of miR30a (a tumour suppressor) and subsequent reduc-

tion of SOX4 (oncogenic transcription factor), a known EMT regulator

(Figure 3).61 Metformin treatment also inhibits the phosphorylation

and oxidation of pyruvate kinase M2 (PKM2), thereby preventing the

downregulation of miR205, a negative regulator of EMT.62 In addition,

while ADT is the gold standard treatment for PCa, ADT induces EMT

possibly through the upregulation of COX2 and p-STAT3.68 Metfor-

min was shown to reduce expression of COX-2, PGE2, and p-STAT3,

potentially inhibiting castration-induced EMT.68 Finally, metformin,

only at very high concentrations, were shown to increase the tumour

suppressor miR-101 that downregulates expression of glyoxalase

1, which also inhibits EMT (Figure 3).69

AR signalling drives PCa growth via regulating cellular prolifera-

tion and apoptosis59; therefore, reducing AR signalling through ADT is

the mainstay treatment for locally advanced PCa.3 Metformin reduces

AR signalling in both androgen-independent (LNCaP-abl) and

androgen-dependent (LNCaP, C4-2B) PCa cell lines.39,59 Shen et al.

reported AMPK activation by metformin in LNCaP cells resulted in

low AR protein levels via reducing AR mRNA expression and increas-

ing AR protein degradation.59 In contrast, Demir et al. found AMPK

activation is not required for the reduction of AR levels.39 Instead,

metformin disrupts AR mRNA association with MID1 translational

complex thereby reducing AR protein levels.39 In addition, Lee et al.

reported that metformin increased small heterodimer partner-

interacting leucine zipper (SMILE), which serves as an AR corepressor,

thereby providing a new mechanism to account for the inhibition of

AR function in PCa cells, independent of AMPK activation

(Figure 2).51

Another key molecular pathway implicated in PCa growth is the

type 1 insulin-like growth factor receptor (IGF-1R) signalling cascade.

Inhibition of IGF-1R using a human monoclonal antibody successfully

inhibited both androgen-independent and -dependent prostate

tumour growth in vivo.81 Activated IGF-1R results in downstream

activation of the phosphatidylinositol 3 kinase/protein kinase-B

(PI3K/Akt) pathway and mitogen-activated protein kinase (MAPK)

pathway thereby increasing cellular proliferation.82 One paper

reported crosstalk between IGF-1R and the AR signalling cascade,

with androgen stimulation inducing cAMP-response element-binding

protein (CREB) activation and CREB-dependent IGF-1R gene tran-

scription, to upregulate IGF-1R.58 Metformin is capable of not only

downregulating AR as mentioned above, but it can also inhibit

androgen-induced cAMP response element (CRE) activity and IGF-1R

gene transcription, thereby reducing IGF-1-mediated cell proliferation

(Figure 2).58 The reduction in IGF-1R expression is supported by Kato

et al. who showed that IGF-1R mRNA and protein expression

decreased following metformin (5 and 10 mM) exposure in PC-3 cells,

and that IGF-1R knockdown using siRNA inhibited cellular prolifera-

tion, invasion, and migration of PC-3 cells. Daily intraperitoneal injec-

tion of metformin in a subcutaneous PC-3 xenograft model reduced

tumour growth and IGF-1R mRNA expression which further supports

the finding that metformin targets IGF-1R signalling to inhibit PCa

growth.46

Other AMPK-independent pathways reported to mediate the

antitumour effect of metformin in PCa included upregulation of

REDD150 and reduction of cyclin D1 and pRb phosphorylation induc-

ing cell cycle arrest40; in N-cadherin expressing PC-3 cells, metformin

reduced TWIST1 thereby silencing N-cadherin and decreasing p65

(subunit of NF-kB) resulting in apoptosis.44 However, in N-cadherin-

deficient LNCaP cells, metformin induced apoptosis via AMPK activa-

tion that resulted in inhibition of downstream NF-kB signalling.44,83

Therefore, the metformin antitumour effect may be mediated via dif-

ferent molecular mechanisms depending on the specific PCa cell line

(Figure 2).

Other studies have investigated the antitumour mechanism of

metformin without evaluating AMPK (Figure 3).43,47,61,62,66–69 In one

study, metformin inhibited cellular migration and invasion via downre-

gulation of histone methyltransferase multiple myeloma SET
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(MMSET),66 and inhibition of Rac1.43 Metformin has also been

reported to activate tumour suppressor Foxo3a resulting in cell cycle

arrest67 and may affect tumour-promoting inflammation, as it inhib-

ited infiltration of tumour-associated macrophages via a reduction in

COX2 and PGE2 in PCa cells.47 Finally, many cancer cells source car-

bon by increasing glucose uptake and lactate from cancer-associated

fibroblasts (CAFs).62 Metformin can reprogram PCa cell metabolism

by reducing Glut1 and MCT1 expression in PCa cells, reducing capac-

ity to take up glucose and lactate through these transporters.62

3.3 | Quantitative analysis

3.3.1 | In vivo effects of metformin

Metformin was tested in PCa preclinical models. While 13 articles

included mouse models, one had an incorrect design and did not

include PCa despite their study aims.72 In the 12 remaining papers that

used metformin in PCa mouse models, three papers used models of

spontaneous PCa including the TRAMP model47,55 or a Hi-Myc mouse

model (where c-myc was overexpressed under the control of the

probasin promoter)54 to assess the effect of metformin on prostatic

intraepithelial neoplasia and cancer lesion development. Of the

remaining nine studies, four PCa xenograft models were used. Three

studies used the AR-positive cell line LNCaP40,44,45 and one study used

AR-positive, androgen insensitive 22RV1 cells.68 Most studies

used AR-negative cell lines, PC-3 cells (six studies) or DU145

(one study).41–46,62 One study injected PC-3 cells orthotopically,43 and

one used injection of PC-3 cells in the lateral tail vein62 in order to

assess metformin effect on metastases. The remaining seven studies

utilized subcutaneous xenograft models40–42,44–46,68 and measured dif-

ferences in tumour volume after metformin treatment as their primary

outcome.

In the seven subcutaneous models, mice were injected with

between 1 and 7 million cells per mouse, although the majority used

1–2.5 million cells. Metformin dose was given daily in drinking water

(doses ranging from 100 to 250 mg/kg/day),40,41,43–45,47,54 gavage

(300 mg/kg),68 intraperitoneal injection (doses ranging from 20 to

250 mg/kg/day),40,42–44,46,55 and in one case, PC-3 cells were pre-

treated with conditioned media from cancer-associated fibroblasts

grown in media with or without 5 mM metformin, before injection and

monitoring of tumour growth without in vivo metformin treatment.62

F I GU R E 2 Schematic diagram of AMPK-dependent and -independent anti-tumour effects of metformin in PCa. The diagram is a summary of
findings from the above 37 articles in “metformin molecular anti-tumour effect”. Abbreviations: AMPK, AMP activated kinase; AR, androgen
receptor; ERK, extracellular signal regulated kinase; EMT, epithelial to mesenchymal transition; FAS, fatty acid synthase; LKB1, liver kinase B1;
mTORC, mammalian target of rapamycin complex; phosphatidylinositol 3 kinase, PI3K; SREBP1c, sterol regulatory element binding protein 1c;
TSC2, tuberous sclerosis complex 2.
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Universally, metformin was reported to reduce tumour initiation,

with reduced prostatic intraepithelial neoplasia lesions,47,54 reduced

metastases consistent with decreased expression of c-myc and EMT

hallmark genes,54,62 and reduced tumour growth for both subcutane-

ous and intraprostatic xenograft PCa models.40–47,54 To further evalu-

ate the reported effects of metformin on subcutaneous tumour

growth, we performed a meta-analysis of studies where tumour vol-

ume was reported. This limited our meta-analysis to include eight of

the 11 in vivo studies with treatment duration 4–6 weeks

(Table S5)40–47 and demonstrated a statistically significant drug effect

reducing tumour growth (Figure 4A, weighted SMD �1.81, overall

effect Z = 5.74, p < 0.00001), with low study heterogeneity

(I2 = 39%). Given this strong association, publication bias was assessed

by funnel plot (Figure 4B), which demonstrates a shift from the

expected mean indicating publication bias for studies showing metfor-

min as an inhibitor of prostate tumour growth in these model systems.

4 | DISCUSSION

T2DM is associated with an increased risk of a variety of can-

cers.20,21,84 Metformin is the first-line pharmacotherapy for T2DM,

used by at least 120 million people worldwide14 and has low

toxicity.15 Various epidemiological studies have shown that

diabetes patients treated with metformin had reduced risk of

PCa,17–19 with improved survival outcomes.23,24 However, direct

clinical evidence of tissue-specific activity is lacking, and it has been

suggested the effects of metformin on cancer outcomes could be due

to the systemic effect of metformin rather than direct antitumour

effects. Two meta-analyses have indicated that metformin is associ-

ated with reduced biochemical recurrence as compared with nonusers

in T2DM patients with PCa.28,35–38 The underlying mechanism in PCa

are multifactorial. Herein, we review and summarize the efficacy and

mechanism of action of metformin as an antitumourigenic agent

in PCa.

The 15 in vitro studies demonstrate metformin is capable of

reducing androgen-dependent PCa cell growth,39–42,46,50–52,55,58–

61,64,67 while 17 studies concluded that metformin inhibited the viabil-

ity of androgen-independent PCa cell growth,39,40,42,44,46,47,50–55,59–

61,66,67 suggesting that metformin could be combined as anticancer

therapy at various stages of PCa. The inhibitory effect of metformin

on PCa cellular growth is replicated in vivo where metformin sup-

presses PCa (androgen-independent and androgen-dependent)

tumour growth in multiple studies.40–47

The molecular mechanisms by which metformin inhibits PCa

growth are highly complex (Figures 2 and 3) and multimodal. AMPK is

a master regulator of homeostasis that has a controversial role. While

AMPK was identified as a tumour suppressor initially,85–88 multiple

F I GU R E 3 Schematic diagram of other molecular mechanisms accounting for the anti-tumour effect of metformin in PCa. The role of AMPK
in these mechanisms have yet been investigated.
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studies have also reported a protumourigenic role.89–91 Several

AMPK-dependent44,59,60 and AMPK-independent pathways39,40,44,51

for metformin activity have been identified in this study; however, not

all studies evaluated whether AMPK was involved in the antitumour

effect of metformin.43,47,61,62,66–69 Regardless of the mechanisms,

most of the studies included in this review showed an antitumour role

of metformin. This is mediated in a variety of ways including inhibition

of cell cycle progression,40,50,54,58,61,66 induction of

apoptosis,42,44,47,52,54,59 inhibition of EMT,60–62,68,69 blocking cellular

invasion and/or migration,39,41–43,46,66,68,69 reducing tumour-enabling

inflammation,47 or changing metabolism.62,63 Mechanistically, the two

most activated oncogenic signalling cascades are the AR and PI3K/

AKT signalling pathways. These two pathways cross regulate each

other such that the inhibition of one pathway activates the other to

allow PCa survival. Hence, combined pharmacological inhibition of

these two pathways resulted in complete regression in PCa xeno-

grafts.92 Metformin downregulates IGF-1R expression hence reducing

downstream activation of AKT,46,58 whereas ARSIs or ADT reduces

AR signalling,3 therefore the combination of both could potentially

inhibit the cross regulation of the two main oncogenic signalling path-

ways driving PCa growth.

ADT, with sequential addition of ARSI are the mainstay treatment

for advanced PCa.3,12 However, it has been shown that castration or

ARSIs could induce EMT,13,68 a process underlying metastasis and

therapeutic resistance.68 Metformin inhibited castration-induced EMT

and reversed ARSI (e.g., enzalutamide) resistance, thereby suggesting

that the combination of metformin with ADT or ARSI could be a pos-

sible therapeutic option for advanced PCa.13,68 Moreover, in vitro

PCa studies that evaluated the combination treatment of an ARSI

(bicalutamide) with metformin showed greater growth inhibition in

the combination treatment as compared with either agent used

alone.52,59,93 Liu et al. evaluated the effect of an ARSI (enzalutamide)

with metformin in PCa xenografts in vivo, showing that the combina-

tion treatment also had a greater inhibition on tumour growth than

metformin alone, although in that study enzalutamide on its own had

no effect.13 These data support the idea that metformin in combina-

tion with ADT or ARSI may be a potential therapeutic option for PCa

patients. In a recent randomized controlled trial (RCTs) of patients

with advanced PCa, the addition of metformin to standard of care

resulted in improved cancer-free survival for both patients with high

risk localized disease and patients with metastatic low tumour volume

disease.94

F I GU R E 4 Meta-analysis of the effect of metformin on growth of subcutaneous prostate cancer tumours. (A) The combined data shows a
significant effect of metformin in tumour reduction. Group size and nature of the data comparison results in high degree of heterogeneity. Dirat43

was excluded as the study duration was 2 weeks and the remaining studies were 4–6 weeks duration. (B) Funnel plot analysis shows a deviation
from the expected mean indicating publication bias with published in vivo studies showing an overwhelmingly inhibitory effect of metformin on
tumour growth.
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Metformin also appears to have a role in secondary prevention of

PCa. Five meta-analyses conclusively indicated that metformin

reduced biochemical recurrence (BCR) of PCa,28,35–38 highlighting the

possibility of repurposing this antidiabetic drug as an antitumour

agent in PCa of various stages (Table 2). Until recently, no RCT have

been done to ascertain the effect of metformin in low risk PCa.95

However, given the promising data seen in preclinical and clinical

studies in the last decade, the Metformin Active Surveillance Trial

(MAST) has been set up to evaluate the role of metformin in reducing

progression amongst men on expectant management for low risk PCa.

This is a phase III randomized, double-blinded, placebo-controlled trial

that is ongoing and estimated to be completed by 2024.96

4.1 | Strength and limitations

The strength of this study lies in the comprehensive search strategy,

which included as many articles as possible, therefore providing a

holistic overview of the mechanisms and antitumour effect of metfor-

min in PCa. Moreover, all included articles (n = 35) have been

assessed for data reliability, with the majority being classified as cate-

gory 1 articles; hence, the findings are reliable.

Nonetheless, this study has several limitations. First, for the

in vivo findings, all but one article showed inhibition on PCa tumour

growth, suggesting the following possibilities—(1) metformin indeed is

potent in terms of inhibiting PCa tumour growth in mice models; or

(2) nonsignificant results are rarely published in this field, such that

most of the published findings are skewed towards the positive side.

Secondly, most of the studies published identified a novel mechanism,

and these findings have not yet been verified by other in vitro or

in vivo studies. Thirdly, the concentration for metformin used for the

in vitro studies were much higher than plasma concentration of met-

formin in diabetic patients.76 Most of the experiments used a concen-

tration of 1–50 mM (Table S5), whereas the plasma concentration of

patients taking metformin varies between 0.3 and 1.3 mg/L and maxi-

mum obtainable concentration of 3 mg/L, which equates to 1–

20 μM.76,97 Hence, whether there is an antitumour effect seen at

therapeutically relevant plasma concentrations of metformin has not

been determined. However, it is important to note that metformin

accumulates across the mitochondrial matrix to target the prostate

tumour energetics directly. The concentration of metformin in pros-

tate tissue has been shown to be approximately two to 32 times

higher than that in serum of PCa patients.74

In addition, in vitro studies are generally not conducted to take

into consideration the pharmacokinetics of metformin, where peak

plasma concentrations occur 2 h post-dose and the elimination half-

life in patients with good renal function is approximately 5 h.76 In

addition, all in vitro experiments reviewed were conducted over

experimental time frames of 24–96 h and at concentrations an order

of magnitude higher than found in plasma. This discrepancy is a

source of controversy in the field. With limited evidence of tissue-

specific concentrations,76 particularly over sustained treatment

periods,98 even with adequate controls, differences in effective

metformin dose are difficult to compare and may be a function of can-

cer cell type and predominant metabolic (glycolytic or oxidative) and

glucose addiction.99 Future in vitro studies could better recapitulate

therapeutic plasma concentrations of metformin at steady state

observed in T2DM patients. This may remove half-life as a confound-

ing factor until further studies of intratumoural concentrations of met-

formin can be ascertained over sustained treatment times.98

4.2 | Conclusion

In conclusion, this systematic review summarizes the in vitro antitu-

mour effects of metformin in PCa and meta-analysis on the inhibition

of PCa growth in mouse models by administration of metformin. The

findings from preclinical studies support the idea that metformin could

be repurposed as an anticancer therapeutic option in PCa either alone

or in conjunction with current therapies (ADT or ARSIs). This is based

on the following factors: (1) The ability to inhibit PCa growth in vitro

and in vivo, (2) reduce ADT-induced cardiovascular adverse effects,

and (3) reversing castration- or treatment-induced EMT.

4.3 | Future directions

Given the meta-analysis revealed publication bias in the in vivo stud-

ies, more preclinical data may be needed to ascertain the antitumour

effect of metformin in PCa mouse models. In addition, the majority of

the clinical studies that evaluated the clinical outcome of PCa patients

who are on metformin are retrospective in nature, which has inherent

biases,29 such as selection bias, interviewer bias or recall bias. Thus,

more long-term RCTs are needed to ascertain whether the inhibitory

effect of metformin on PCa growth in preclinical studies are applicable

to PCa patients. This is a rapidly evolving field, with the first RCT

being published last year showing that metformin combination with

ADT improves the outcome for patients with advanced PCa.94 While

the MAST (a randomized, double-blinded, placebo-controlled trial),

which looks at the role of metformin in early stage PCa, is currently

ongoing and will be completed in 2024.96
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